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A high-precision automatic state monitoring and abnormity alarm technique is proposed to solve the
process improvement issues of fiber-optic coil winding and splicing. Industrial cameras are used to capture
optical and hot images during the assembly of optical components of a fiber-optic gyroscope. A line and
contour analysis technique is used to detect abnormal winding. By analyzing the intensity distribution
of transmitted light, the graph cut model and multivariate Gaussian mixture model are used to detect
and segment the splicing defects. The practical applications indicate the correctness and accuracy of our
vision-based technique.

OCIS codes: 150.0150, 100.0100, 060.0060.
doi: 10.3788/COL201311.101501.

The fiber-optic coil is one of the most important compo-
nents of fiber-optic gyroscopes[1]. Fiber-optic gyroscopes
use polarization lights to detect changes in angular rate
according to the Sagnac effect. Thus, the fiber-optic
coil functions in multiple light transmission[2]. Many
studies[3−5] have proven that the winding process of a
fiber-optic coil has distinct influences on the output preci-
sion of a gyroscope. For example, in Ref. [4], the authors
have built the finite element model of a typical coil wind-
ing mode to study the effects of structural parameters,
thermal parameters, and temperature disturbed param-
eters on the Shupe error of fiber-optic gyroscope. Thus,
the assemblage technique of this coil is an extremely im-
portant operation process in gyroscope manufacture.

Currently, at least two kinds of pivotal operation are
correlated with this issue, namely, winding and splicing
operations. Figure 1 shows the typical optical compo-
nent diagram of a kind of fiber-optic gyroscope. When
assembling the optical module, the fiber-optic coil is
firstly wound in a quadrupole symmetrical pattern[3].
The ends of the fiber-optic coil are then spliced with
the ends of a Y-junction optical waveguide with a po-
larization maintaining (PM) fiber splicer. Finally, all
other ends such as light source, coupler, and detector are
spliced by other single-mode or multi-mode fiber splicer.
Traditionally, the winding and splicing operations are all
manually completed. The burdensome labor of engineers
inevitably brings errors. To address these problems, we

Fig. 1. Optical component diagram of a kind of fiber-optic
gyroscope.

Fig. 2. (a) Sketch map of the winding diagram, (b) and (c)
actual winding images of a kind of fiber-optic coil.

use the machine vision technique together with pattern
recognition theory to replace people with intelligent ma-
chines and improve their working reliability.

Figure 2 shows the winding process diagram of a fiber-
optic coil. The winding process involves rolling and
wrapping fibers on the surface of a skeleton based on
a quadrupole symmetrical pattern. This winding pat-
tern demands fibers to be tidily arrayed with one another
without any interspace or interleaving between neighbor-
ing wires. Given that the high-output precision of a
fiber-optic gyroscope requires a long light transmission
distance of a fiber-optic coil (i.e., the length requirement
may be more than hundreds of meters), the winding and
surveillance processes inevitably consume several hours
or days. As a result, abnormal winding occasionally
occurs. Figure 2(b) shows the normal winding mode,
whereas Fig. 2(c) depicts the result of the abnormal wind-
ing mode.

To solve the abnormal detection problem, two kinds of
image analysis methods are utilized. Figure 2 (a) shows
the section plane image of the winding process. Firstly,
we use the parallel detection technique to guarantee ac-
curate orderliness of wound fibers. The image contents
within the red rectangle in dashed line show the array of
paratactic fibers. Once the parallel mode is broken, an
abnormal alert should be reported. The line detection
method of Hough transformation[6] can be used to judge
the juggling line phenomenon. Secondly, a contour anal-

1671-7694/2013/101501(4) 101501-1 c© 2013 Chinese Optics Letters



COL 11(10), 101501(2013) CHINESE OPTICS LETTERS October 10, 2013

ysis method[7] is used to identify the abnormity edge of
the fiber-optic coil image. The image included within the
green rectangle in dashed line displays the winding edge
of fibers. The similar arc and pixel number of each line
end can be observed in turns except for abnormal modes.

Figure 3 shows the line and edge contour detection re-
sults. Given that the abnormity detection of the wind-
ing process has a real-time request, complex processing
methods cannot be used. We set the underside region of
the winding machine as the region of interest (ROI) to
implement the feature analysis task. Figure 3(a) shows
that after setting the ROI, the Hough line detection
method can be used to identify abnormity: if the slope
of line detection result markedly differs from the history
value, we conclude the occurrence of abnormity. Figure
3(b) shows the edge contour detection result.

Firstly, the morphological method of the following for-
mula

Iedge=
1

N

N∑

i=1

{[(IROI ⊕ Bi)−(IROIΘBi)] ΘBi−1} (1)

is used to extract contour, where Iedge and Rabnormity are
the processing results of edge and abnormity detection,
respectively. Symbols “⊕” and “Θ” denote dilation and
erosion operations, respectively. Bi is a morphological
rectangle operator with size 5×5. All its elements equal
“1”. Then, we compute the contour difference among
selected images based on

Rabnormity =

{
1 I(t = t1) − I(t = t0) > Twinding

0 else
, (2)

where Twinding is a threshold, and t0 and t1 are the spe-
cific time points (t1 > t0).

The time-point selection rule of images I(t = t1) and
I(t = t0) should be related to the working speed of the
winding machine. This rule guarantees that the incre-
ment of edge contour is smaller than a threshold in the
time axis. For example, if the fiber-optic coil number
appearing in the former image (t= t0) is n, a proper cap-
ture time t1 can be selected only when the coil number
in the latter image is n+1 or n+2. Finally, once the pixel
number of contour difference exceeds this threshold, an
abnormity should also be reported.

In this letter, a defect segmentation method with il-
lumination prior is proposed to monitor the process of
fiber splicing. Figure 4 shows the splicing sketch map and
their image samples. while splicing fibers[8], we initially
peel off the jackets. Then, we place cladding and core
into the fiber splicer after the surfaces are cleaned. Next,
the splicing machine heats these two fibers by current un-
til a proper polarization observation by lens-effect-tracing

Fig. 3. Abnormal line and contour detection results.

Fig. 4. (a) Fiber splicing diagram and spliced image samples;
(b) result of the normal mode; (c) sample of the defective
mode.

value is obtained. All processes are observed by two
charge-coupled device cameras with a light source fixed at
their opposite sides. The two white rectangular regions
in the center are the imaging results of spliced fibers cap-
tured from orthogonalized visual angles. If the cut edge
of fibers is not smooth or the fiber cores aim at each other
with a large offset, defect phenomena appear.

No real-time processing request exists; thus, we use a
graph cut model (GCM)[8] to solve the defect segmenta-
tion task. The GCM is a kind of optimization method
always used to study the minimization cut issue in graph
theory. When solving the segmentation problem, each
pixel is regarded as a graph vertex, and then elaborated
energy functions are designed for typical applications.
Currently, to improve the calculation effect, many priors
are considered to compose energy functions. For exam-
ple, Vicente et al.[9] used a DijkstraGC with connectivity
priors to reduce user interaction when segmenting thin
structures. Comparison of these models reveals that the
forms of energy function can be written based on

E(A) = λ1

∑

i∈I

E1(xi) + λ2

·
∑

(i,j)∈N,xi 6=xj

E2(xi, xj) + λ3

∑

i∈I

E3(xi), (3)

where
3∑

i=1

λi=1 and λi>0. In Eq. (3), energy function

E1 describes the cost item of similarity between source
and sink vertices. E2 is the cost of non-continuity among
neighboring points. E3 represents the similarity cost be-
tween image region and priors.

For simplicity, the classic design method of E1 and E2
[8]

are used. If we define the defective region as foreground
and the normal region as background, their probabilities
can be estimated by p(Ii|x=1) and p(Ii|x=0) in Gaussian
forms, e.g., p(Ii|x=1) can be calculated by

p(Ii|x = 1) =
1√

2πσF
exp

[
− (Ii − µF)2

2σ2
F

]
. (4)

Thus, function E1 can be defined in Table 1, where
fF

i =−log[p(Ii|xi=1)] and fB
i =-log[p(Ii|xi=0)], C is a

constant that can be decided by experiments. Function
E2 can be estimated by

E2 = exp

[
− (Ip − Iq)

2

2σ2
n

]
× 1

dist(p, q)
, (5)
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where Ii is the gray of pixel; xi=1 or 0 denotes the ith
pixel belonging to the foreground or background; µ de-
notes means; σ denotes variances; subscripts “F” and
“B” are the foreground and background, respectively; σn

is the image noise; and dist (p, q) is a distance metric.
Obviously, E1 calculates edge weights between each

pixel and terminal points, whereas E2 estimates edge
weights among neighboring pixels. Although these en-
ergy functions can solve the segmentation problem to
some extent, more prior information should be consid-
ered to improve precision.

The design of E3 considers the illumination prior of
transmitted light[10,11]. Let us take the ellipse-type PM
fiber as an example. Figure 4(a) shows that the transmis-
sion of light from one side to the other is complex, i.e.,
reflection, refraction, and intensity distribution of light
are all relative to the wavelength, light incident angle, or
refractive index and reflectivity of a material et al.[12]. In
Ref. [13], the authors used an analytical method of sim-
ulating polarized light transportation in biological tissue
samples. The Gaussian function is used to imitate the in-
tensity distribution of laser. Yu et al.[14] used a Gaussian
pulse to test the light propagation characteristic. With-
out loss of generality, we also take the Gaussian distribu-
tion assumption of transmitted ray to be true in this let-
ter. However, different from a laser, the transmitted rays
originate from a surface light source. To simulate the sur-
face light source, the complex Monte Carlo method[15,16]

is always used to determine its distribution. Fortunately,
a fiber can focus surface rays like a convex because of its
cylindrical shape. Thus, by considering the intensity dis-
tribution of transmitted light as a multivariate Gaussian
mixture model (MGMM)[17], we can avoid the complex
modeling process of Monte Carlo. Figure 5(a) shows the
simplified transmitted light sketch map of fiber splicing
implemented with an Ericsson FSU-995PM fiber splicer.
Figure 5(b) shows the spliced image samples. Figure
5(c) shows the distribution simulation of two-component
MGMM. The intensity distribution shapes of MGMM
and spliced fibers are found to be similar to each other.

In this letter, we suppose that the intensity distribution
of spliced fibers in normal mode obeys the MGMM form.
The distribution functions of MGMM can be expressed
as

F (X) =

K∑

i=1

̟if(X |Ui, Σi), (6)

f(X |Ui, Σi)=
1

2π|Σi|1/2
exp

{
−1

2
[X−Ui]

T
Σ−1

i [X−Ui]

}
,

(7)

Table 1. Energy Function E1 of GCM

Edge Type Weight Vertex Value

{p, s}

fF

i p /∈ F ∪ B

0 p ∈ F

C p ∈ B

{p,t}

fB

i p /∈ F ∪ B

C p ∈ F

0 p ∈ B

Fig. 5. (a) Sketch map, (b) image samples, and (c) intensity
imitation of transmitted light.

 

Fig. 6. Defect segmentation results of GCM. (a) and (e) are
the original images. (b) and (f) are the segmentation results
of GCM using only E1 and E2 functions. (c) and (g) are the
manually obtained segmentation results. (d) and (h) are the
results of GCM using E1, E2, and E3 together.

Thus, E3 can be estimated by

E3 =

{
K Ii − Îi > T0

0 else
, (8)

where X is the image intensity, Ui and
∑

i are the mean
and covariance vectors of the MGMM component, re-

spectively; ̟i denotes weights;
K∑

i=1

̟i = 1, ̟i > 0; Ii

and Îi are the original and estimated image intensities,
respectively; K is a constant; T0 is a threshold.

Once the defective mode occurs, some bright light spots
appear at the center of fiber joint. Thus, when calcu-
lating E3, we select initial pixels at the outside regions
of the spliced image, e.g., pixels within the yellow rect-
angle in Fig. 5(b), to estimate the MGMM parameters.
The expectation–maximization algorithm[18] is used to
implement parameter estimation. After calculating the
coefficients, we can use this model to compute the in-

tensity distribution Îi = F (X) at the center region of
the image where the emergence probability of defects is
always high. Finally, we can use the difference between
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the actual image intensity Ii and estimated Îi to calcu-
late E3.

Figure 6 shows the defect segmentation results. Before
we use GCM for elaborated computation, the flood fill
algorithm[8] is used to identify initial segmentation. The
control parameters of flood fill algorithm for guaranteeing
a smaller segmentation region than the actual defective
region are very easy to set. Figure 6 shows that our pro-
posed method has a better segmentation effect than the
traditional method. The highlighted region in the middle
axis is always troublesome when segmenting the defec-
tive region because they have similar gray values with
defective pixels. Thus, with the accessorial constraint of
E3, the pixels in the highlighted axis can be classified as
the background. Figures 6(e) and (f) also notice some
small spots at the right-top and bottom sides. These
spots are always the tiny impurities attached onto the
surface of fibers. Thus, we do not regard them as defects
because of their small sizes.

In conclusion, a high-precision automatic state moni-
toring and abnormity detection method for the winding
and splicing of fiber-optic coil is proposed. Hough line
detection and morphology-based contour segmentation
techniques are used to monitor the juggling line issue of
fiber-optic coil winding. A GCM with MGMM illumina-
tion priors is proposed to segment the defect of a spliced
fiber. Many experimental results show the correctness
and validity of our techniques.

This work was supported by the National “973”
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2011CB711000.
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